
High Performance Encryption Cores for 3G Networks

Tomás Balderas-Contreras
Instituto Nacional de Astrofı́sica, Óptica y

Electrónica
Luis Enrique Erro 1, 72840

Tonantzintla, Puebla. MEXICO

balderas@inaoep.mx

René Cumplido
Instituto Nacional de Astrofı́sica, Óptica y

Electrónica
Luis Enrique Erro 1, 72840

Tonantzintla, Puebla. MEXICO

rcumplido@inaoep.mx

ABSTRACT
This paper presents two novel and high performance hard-
ware architectures, implemented in FPGA technology, for
the KASUMI block cipher; this algorithm lies at the core of
the confidentiality and integrity algorithms defined for the
Universal Mobile Telecommunication System (UMTS) stan-
dard. The first proposal is a pipelined design and the sec-
ond implements an iterative approach. The throughput for
these architectures turn out to be higher than the through-
put achieved by other proposals.

Categories and Subject Descriptors
E.3 [Data Encryption]: standards; C.3 [Special-Purpo-
se and Application-Based Systems]: real-time and em-
bedded systems

General Terms
Algorithms, Performance, Design, Security

Keywords
3G, UMTS Security Architecture, KASUMI, FPGA

1. INTRODUCTION
The KASUMI block cipher was adopted by the 3rd Gen-

eration Partnership Program (3GPP) as the cornerstone of
the UMTS f8 confidentiality algorithm and f9 integrity al-
gorithm. The GSM (Global System for Mobile communica-
tions) A5/3 and the GPRS (General Packet Radio Service)
GEA3 encryption/decryption algorithms rely on KASUMI
as well

KASUMI has a Feistel structure comprising eight rounds,
operates on 64-bit data blocks, its processing is controlled by
a 128-bit encryption key K, and has the following additional
features derived from its Feistel nature [1]: a plaintext block
is the input to the first round, the ciphertext is the last
round’s output, the encryption key K is used to generate a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

set of round keys ({KLi, KOi, KIi}) for each round i, each
round computes a different function as long as the round
keys are different and the same algorithm is used both for
encryption and decryption.

Figure 1 shows the structure and components of the KA-
SUMI block cipher. For odd rounds the round-function is
computed by applying the FL function followed by the FO
function. For even rounds the FO function is applied be-
fore FL. FL, shown in figure 1(d), is a 32-bit function made
up of simple AND, OR, XOR and left rotation operations.
FO, illustrated in figure 1(b), is also a 32-bit function hav-
ing a three-round Feistel organization which contains one
FI block per round. FI, see figure 1(c), is a non-linear 16-
bit function having itself a four-round Feistel structure; it
is made up of two nine-bit substitution boxes (S-boxes) and
two seven-bit S-boxes. Figure 1(c) shows that data in the FI
function flow along two different paths: a nine-bit long path
(thick lines) and a seven-bit path (thin lines). Notice that
in Feistel structures, such as the one used in this algorithm,
each round’s output is twisted before being applied as input
to the following round. After completing eight rounds KA-
SUMI produces a 64-bit long ciphertext block corresponding
to the plaintext input block.

The rest of this document is organized as follows: section
2 describes the sequence of steps carried out to design each
of the two architectures, section 3 describes the issues con-
cerning the implementation of the designs in FPGA technol-
ogy, provides the performance and area complexity results
obtained and a comparison with related works. Finally, sec-
tion 4 concludes.

2. DESIGN PRINCIPLES
This section describes the main techniques conceived to

design the two architectures.

2.1 The pipelined datapath
At every clock cycle the architecture receives a plaintext

block as input and process it as it goes through the stages
that make up the pipeline to produce a ciphertext block.
The design can process different blocks simultaneously in
the different stages of its datapath. At every clock cycle a
ciphertext block leaves the pipeline from the last stage and
the first stage receives a new input plaintext block. This
architecture reaches the best performance owing to the ex-
ploitation of temporal and spatial parallelism when process-
ing plaintext blocks.

Consider two instances of the FI block in figure 1(c), re-
place each pair of S9 S-boxes located in the same position in

14.4

240

KO1 KI1KL1

FOFL

KO2 KI2

FO

KL2

FL

KO3 KI3KL3

FOFL

KO4 KI4

FO

KL4

FL

64

3232

KO5 KI5KL5

FOFL

KO6 KI6

FO

KL6

FL

KO7 KI7KL7

FOFL

KO8 KI8

FO

KL8

FL

64

L0 R0

L8 R8

(a) Feistel

KOi,1

KIi,1FIi1

KOi,2

KIi,2FIi2

KOi,3

KIi,3FIi3

32

32

1616

(b) FO

9 7

S9

S9

S7

S7

16

16

KIij1

KIij2

(c) FI

AND

OR

<<<1

<<<1

KLi1

KLi2

16 16

32

32

(d) FL

Figure 1: The KASUMI block cipher.

16

16

16 16

9 7

79

9 7

79

clk clk

clk clk

KI12
clk

KI22
clk

KI11
clk

KI21
clk

S9

S9

clk

clk

clk

clk

S7

S7

Figure 2: Datapath implementing the dual-port FI
function.

both FI blocks by a single dual-port S-box, and repeat this
procedure with the rest of the pairs of S7 S-boxes. The re-
sult is the datapath in figure 2, that only contains two dual-
port S9 S-boxes and two dual-port S7 S-boxes and combines
two FI functions in one. During implementation these four
dual-port S-boxes are mapped to dual-port embedded mem-
ory blocks inside the FPGA (SelectRAM blocks). Since the
embedded memory blocks are synchronous, and the dual-
port FI datapath is required to provide its results after one
clock cycle, the upper S-boxes are designed to be negative
edge-triggered, whereas the lower S-boxes are designed to be

positive edge-triggered. The first phase of the design process
is complete.

Now consider a sequence of an odd round followed by
an even round, as illustrated in figure 3(a). Figures 3(b)
and 3(c) show two equivalent ways of representing the same
two-round sequence. In figure 3(d) each of the FO boxes
is unrolled and drawn in a way that highlights the parallel
structure of the FO function. Figure 3(e) shows the result
of splitting the 32-bit XOR gate located between the two
FO function blocks into two 16-bit XOR gates and “unfold-
ing” the datapath comprising the upper FO function block’s
output, the two 16-bit XOR gates and the lower FO func-
tion block in figure 3(d). Notice that either the 32-bit R0
input and the 32-bit R2 output are now split into two 16-bit
lines and that the components to the left of the lower FO
function in figure 3(d) appear to the right in figure 3(e) as
a consequence of the unfolding action. Figure 3(f) shows
the result of joining the two FO blocks; this highlights the
parallelism between each pair of FI function blocks. These
actions make up the second phase of the design process.

From the two-round datapath in figure 3(f) it is possible to
derive the pipelined datapath in figure 4. At first each pair
of parallel FI function blocks is replaced by a single dual-
port FI block; in this case three replacements are needed.
Next, a pair of registers, a negative edge-triggered register
followed by a positive edge-triggered register, is added in
every line surrounding the dual-port FI block to synchronize
the corresponding data with the two values provided by the
dual-port FI block. The resulting pipeline has four stages,
meaning that it needs four cycles to perform two rounds of
the ciphering process. Since the whole encryption process
is carried out by the concatenation of four pipelined two-
round datapath modules, identical to the one in figure 4,
the architecture’s initial latency is 16 clock cycles.

241

KO1 KI1KL1

FOFL

KO2 KI2

FO

KL2

FL

64

3232
L0 R0

R2L2
32 32

64

(a) Step 1

KO1 KI1KL1

FOFL

3232
L0 R0

KO2 KI2

FO

KL2

FL

64

64
L2 R2

32 32

(b) Step 2

KL1 FL

KO1
KI1 FO

FL

FO
KO2
KI2

KL2

64

64

3232
L0 R0

3232
L2 R2

(c) Step 3

KO1,1 KO1,2

KI1,1

KO1,3

KI1,3

KI1,2

16 16

FI FI

FI

KO2,1 KO2,2

KI2,1

KO2,3

KI2,3

KI2,2

16 16

FI FI

FI

64

3232
L0 R0

KL1 FL

FLKL2

16 16

16 16

64
L2 R2

3232

(d) Step 4

KO1,1 KO1,2

KI1,1 KI1,2

32

KO1,3

KI1,3

32

1616

1616

KO2,2

KI2,2

KO2,1

KI2,1

KO2,3

KI2,3

KL1

KL2

L0

R0 highR0 low

R2 highR2 low

FL

FI FI

FI

FI

FI FI

L2

FL

(e) Step 5

KO1,1 KO1,2

KI1,1 KI1,2

32

KO1,3

KI1,3

32

1616

1616

KO2,2

KI2,2

KO2,1

KI2,1

KO2,3

KI2,3

KL1

KL2

L0

R0 high

R0 low

R2 high

R2 low

FL

FI FI

FI

FIFI

FI

L2

FL

(f) Step 6

Figure 3: Sequence of steps to design a parallel datapath for a sequence of two rounds.

The key scheduler for the two-round architecture just de-
scribed is also a four-stage pipelined design and provides
each stage of the ciphering datapath with the round keys it
needs and no more. Four instances of this key scheduling
datapath must be connected in series to carry out the whole
ciphering process.

2.2 The iterative approach
The basic block for this architecture is the datapath in

figure 4, although not used in a pipelined fashion. A multi-
plexer is placed at each of the L0 and R0 input ports; these
multiplexers select the input to the datapath out of two op-
tions: a new input plaintext block and the output value
L2||R2, which is fed back to the datapath’s input. A plain-
text block travels alone through the datapath every clock
cycle, requiring four clock cycles to reach the end of the
two-round datapath and 16 cycles to complete the iterative
eight-round ciphering process.

This architecture requires the design of a new key sched-
uler that issues and maintains during two cycles the set
of round keys for the first round ({KL1, KO1, KI1}) along
with the 16 most significant bits of the KO2 and KI2 round
keys. During the next two cycles it must issue and maintain
the rest of the round keys for the second round, i.e. the 32
least significant bits of the KO2 and KI2 round keys and the
KL2 round key. The key scheduler designed to meet these
requirements contains two left-rotate registers: one register
stores the array of eight 16-bit subkeys (Ki, i = 1, . . . , 8)
that make up the encryption key K and the second register
stores the array of fixed constants (Ci, i = 1, . . . , 8) used to
generate the round keys. Both of these registers are syn-
chronized with a divide-by-two clock divider that allows the
contents of the registers to be available during two clock cy-

cles before being shifted. The registers must be pre-loaded
with the encryption key K and the array of constants before
any ciphering process is carried out.

3. IMPLEMENTATION
The design flow consisted on describing the architectures

using VHDL, validating then using testbenches in the speci-
fications and implementing then using Xilinx Synthesis Tech-
nology (XST) tools for Virtex-E FPGAs to make fair com-
parisions with other proposals.

3.1 Synthesis results
Table 1 shows the results provided by the XST after syn-

thesizing the pipelined architecture for the XCV1000E-8-
BG560 device and the same information for the iterative
design in the XCV300E-8-BG432 device. The total number
of slices in the reconfigurable fabric assigned to the designs
does not surpass 31% in the pipeline case and the 20% in
the iterative case. This indicates that the designs use the
FPGA’s hardware resources in an efficient manner.

Virtex-E devices contain large blocks of SelectRAM mem-
ory. Each of these blocks is a fully synchronous dual-port
(True Dual Port) 4096-bit RAM with independent control
signals for each port. Therefore, one SelectRAM block is
enough to store an 896-bit dual-port S7 S-box, but the de-
signs require two SelectRAM blocks to store a 4608-bit dual-
port S9 S-box.

3.2 Comparison of results
Table 2 shows that the pipelined architecture described

in this document has the best performance among all of the
designs proposed and reaches the highest clock frequency

242

Table 2: Comparison of the architectures with other proposals.
Proposal Initial latency Area Frequency Throughput Number of Number of

(clock cycles) (slices) (MHz) (Mbps) S-boxes SelectRAM blocks
Pipelined
Work in [2] 32 1100 33 234 12 N/A †
Work in [4] 40 2213 37.72 2414 96 96
Work in [3] 8 9476 56 3584 96 N/A †
This work 16 3928 83.139 5321 48 72
Iterative
Work in [2] 8 650 20 110 12 N/A †
Work in [4] 40 749 35.35 71 24 24

56 368 68.13 78 2 N/A †
Work in [5] 32 370 58.06 117 4 N/A †

8 588 33.14 266 12 N/A †
This work 16 625 79.453 318 12 18

†: N/A = Not applicable

1616

FL

32

L0

KL1

KO1,1 KO1,2

KI1,1 KI1,2

R0 highR0 low

KO1,3

KO2,1

KI2,1KI1,3

dpFI

dpFI

KO2,2 KO2,3

KI2,2 KI2,3

dpFI

32

1616

L2

FLKL2

R2 low

16

R2 high

16

Figure 4: Pipelined datapath for the two-round se-
quence.

owing to its short critical path. Not only does it have a
higher throughput than the design in [3], but is 2.4 times
less expensive. The iterative architecture achieves higher
throughput than the rest of the examined iterative propos-
als, this time due to its high clock frequency and its low
latency. The table also shows that the least expensive de-
signs in terms of hardware resources are the ones with the
lowest performance.

4. CONCLUSION
This document described two novel proposals to imple-

ment the KASUMI block cipher in hardware: the first im-
plements a pipeline technique that achieves the highest per-
formance; the second implements an iterative strategy that
reduces the number of hardware resources needed and has

Table 1: Synthesis results concerning area complex-
ity for the architectures.

Total number
Category Number of of elements Percentage

elements used available of use
Pipelined
Slices 3928 12288 31%
Slice Flip Flops 6596 24576 26%
4-input LUTs 2146 24576 8%
SelectRAM blocks 72 96 75%
Iterative
Slices 625 3072 20%
Slice Flip Flops 1018 6144 16%
4-input LUTs 649 6144 10%
SelectRAM blocks 18 32 56%

a high throughput. The techniques used during the design
phase are the mapping of S-boxes to dual-port embedded
memory blocks, the manipulation of the datapath to re-
veal and exploit parallelism, and the use of clock frequency
dividers to simplify the key scheduler. The architectures
are suitable for implementation in ASIC technology and in-
tegration into mobile terminals and network equipment to
improve the level of security in the network. The proposed
designs can also be integrated into complex processing ele-
ments as functional units.

5. REFERENCES
[1] 3rd Generation Partnership Program. Document 2:

KASUMI Specification. Technical Specification 35.202.
Release 5. Version 5.0.0.

[2] H. Kim, Y. Choi, M. Kim and H. Ryu. Hardware
Implementation of the 3GPP KASUMI Crypto
Algorithm. In ITC-CSCC-2002 Conference
Proceedings. 2002.

[3] P. Kitsos, M. D. Galanis and O. Koufopavlou.
High-Speed Hardware Implementations of the
KASUMI Block Cipher. In ISCAS’04 Conference
Proceedings. 2004.

[4] K. Marinis, N. K. Moshopoulos, F. Karoubalis and K.
Z. Pekmestzi. On the Hardware Implementation of the
3GPP Confidentiality and Integrity Algorithms, In 4th
ISC 2001 Conference Proceedings. 2001.

[5] A. Satoh and S. Morioka. Small and High-Speed
Hardware Architectures for the 3GPP Standard
Cipher KASUMI. In 5th ISC 2002 Conference
Proceedings. 2002.

243

